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Abstract
In the growing world, the utilization of electrical energy is increasing rapidly. Excessive use of fossil fuels will drain them
and also invite hazardous pollution. Integrating renewable energy resources as distributed generators (DGs) can fulfill the
rapidly increasing electrical energy demand and promote green energy generation to a large extent. The intermittent nature
of renewable energy and higher penetration of DG may adversely affect the operation of the distribution network (DN). As
a result, power disparity, reverse power flow to the grid, and voltage instability may exist. One key solution is to optimally
integrate the renewable energy-based DG and battery energy storage system (BESS) in the coordination of demand response
(DR). This paper proposes a multilevel particle swarm optimization technique to synchronize the distributed energy resources
(DER) and DR in the DN. The proposed approach is implemented on the IEEE 33 bus system energized by coal power plant
(CPP). The first level of optimization finds the sizes and locations of DER (DG and BESS), and the next level determines
the optimal power dispatch in the coordination of DR. The outcomes of this framework exhibit effectiveness in the optimal
utilization of renewable energy resources and the enhancement of power quality parameters in DN so that CO2 emissions are
reduced by 32.71% from CPP.

Keywords CO2 · Coal power plant · Distributed generation · Demand response · Renewable energy · Battery energy storage
system · Multilevel optimization

List of symbols

t.p. Time period
PT
i , PT

J Active power magnitude ith and jth
node for the t.p. of T

ri j Branch resistance between ith and jth
node

PT

BESS
(
Ci
Di

) Power ofBESS (charging and discharg-

ing) at ith node for t.p. of T
I TGrid Output current the substation trans-

former at any time T
PMax.
BESS Maximum limit of power dispatch

� Conversion factors from daily to yearly
ηc Charging efficiency of BESS

B Vivek Saxena
vvksaxena1234@gmail.com

1 Department of Electrical Engineering, Delhi Technological
University, New Delhi, India

2 Department of Electrical and Electronics Engineering,
A.B.E.S. Engineering College, Ghaziabad, India

PT
c Converter loss for t.p. of T

I Ti j Level of current between i and j bus in
hour T

ηd Discharging BESS efficiency
Pmax
PV Maximum size of DGs

EBESS, i BESS energy at ith node
VMax, VMin Limits of node voltages
η Efficiency of the storage system
PMin.
BESS Minimum limit of power dispatch

V T
i Magnitude of the voltage at the ith node

during the t.p. of T
V T
Grid Magnitude of grid voltage at any time

T
EMax
BESS Maximum limit of energy

C Contract load
Imax
i j Thermal limit (maximum) of line

between bus i and j (A)
KT
i Allocated load factor for bus i at t.p. of

T
Pmin
el, i , P

max
el, i Limits of responsive load (maximum

and minimum)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00202-024-02239-5&domain=pdf


Electrical Engineering

V T
i , V T

j Node voltage of ith and jth node for the
t.p. of T

PT
in, i Instantaneous load (nonresponsive and

responsive)
QT

Di Reactive power demand at node ith at
any time T

PT
Loss Power delivery loss for the t.p. of T

QT
i , Q

T
j Reactive power magnitude ith and jth

node for the t.p. of T
Rr
PV Rated PV module radiations

PT
el, i Responsive load at any time T

PT
Di Real power demand at node ith at any

time T
ETotal
i Total demand of energy of the day

SOCMin., SOCMax. SOC limits
PT
Gi Real power injection at node ith

RT
PV Solar radiation at time T

χ Penetration of DR
SOCT

i SOC of BESS at bus i in hour T
PPV, i Active power injection at node ith at

any time T
V T
D Voltage deviation penalty

ISpc Specified reverse current limit
PT
R Reverse power flow at any time T

�t Change in time
IPV Solar module current (A)
δTi , δTj Voltage angle of ith and jth node for the

t.p. of T
QT

Gi Reactive power injection at node ith for
any time T

LT
d , i Hourly demand for the t.p. of T

P0
D, i Initial real power demand at ith node

Q0
D, i Initial reactive power demand at ith

node
N Number of buses

1 Introduction

In the modern age, the integration of renewable energy
resources demands the implementation of a smart grid, uti-
lizing real-time information and advanced communication
technologies to achieve its objectives. Smart grids enable
bidirectional communication between energy consumers and
producers [1]. Several studies have investigated responsive
load management based on dynamic pricing, all arriving at
the same conclusion: shifting energy consumption from peak
to off-peak hours in coordination with renewable energy
resources maximizes benefits for prosumers [2–4]. Rapid
advancements in small-scale generation technologies have
compelled distribution system operators (DSOs) to increase

the proportion of distributed generators (DGs) in distribution
networks (DN). To optimize DN performance, it is essential
to determine the ideal size and location of DGs. Previous
research has demonstrated that suboptimal resource alloca-
tion can have counterproductive effects [5–7].

By incorporating DGs optimally, various objectives have
been achieved, such as enhancing power quality, improving
voltage profile, reducing atmospheric pollutants, and enhanc-
ing system stability and reliability, among others. However,
traditional distribution systems face challenges in handling a
large number of renewable energy sources due to their uncon-
trollable and unpredictable nature, which also varies over
time [8].

To address this, one potential solution is the adoption of
battery energy storage systems (BESS) to increase the pen-
etration of power from non-dispatchable DGs in the DN
[9–12]. Many studies have focused on modeling and opti-
mizing the energy management of BESS to support DG
integration.

While considerable efforts have been made to optimize
BESS capacity, the location aspect is often overlooked in
the objective function [9, 10]. To fully optimize DN perfor-
mance, it is highly recommended to simultaneously consider
both the location and size of BESS, which currently lacks
adequate attention in the academic literature. By identifying
the optimal size and position of BESS, the benefits of DSOs
can be significantly enhanced [11].

The optimization of BESS involves various objectives,
including minimizing power losses, depreciation of cost
functions, and maximizing energy arbitrage profits, as dis-
cussed in [12]. The study evaluates the implications of
optimizing the capacity and location of BESS for hybrid
power plants based onwind energy and hydro energy in coor-
dination with BESS, as stated in [13].

In their research [14], the authors explored how network
reconfiguration influences the sizing and placement ofBESS.
However, implementing BESS can be costly for the DSO,
leading to increased investment and operational expenses.
The lifespan of BESS is influenced by factors such as the
depth of discharge (DOD) and charging and discharging
cycles, as mentioned in [15]. Studies indicate that a well-
positioned and sizable BESS can support high penetration
of DGs. Yet, expanding the BESS size can create additional
cost burdens for the DSO, prompting researchers to explore
alternative methods for DR to alleviate this pressure on
BESS. DR has shown promise in various aspects of the smart
grid, including communication and consumer coordination
through price-based demand response, leading to reduced
energy consumption costs and peak occurrence [16]. DR
implementation in the DN in Finland resulted in technologi-
cal benefits like reduced power losses and improved voltage
profiles [17]. Researchers demonstrated a DR-coordinated
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approach in allocatingDGs tomitigate the intermittent nature
of renewable energy sources [18–21].

The authors have effectively showcased the efficiency and
advantages of integrating renewable energy planning into
the coordinated management of electric vehicles [22, 23].
This integration not only contributes to the optimization of
the DN but also emphasizes the intersection of technolog-
ical advancements and economic benefits. To realize these
synergies within the DN, the study employs sophisticated
bilevel ormultilevel optimization approaches [24–26]. These
approaches, characterized by their hierarchical structure,
enable a comprehensive exploration of technological and
economic optimizations in hybrid energy systems [27–30].

Furthermore, the study recognizes the pivotal role of DER
in enhancing the power grid’s overall performance. The inte-
gration of DER into the power grid has been documented
to significantly improve various power quality parameters
[31–33]. This underscores the broader impact of incorporat-
ing DER technologies, such as renewable energy sources, in
bolstering the reliability and quality of the electrical power
supply.

DR is implemented to address demand and supply imbal-
ances and mitigate the constraints faced by DG owners. In
a previous study by the authors [34], they explored the joint
deployment of DR and DG loads in the DN. The authors
demonstrated a coordinated approach to optimize the benefits
for various stakeholders in the utility sector [35, 36]. Based
on this research, it was found that DR proves effective in sce-
narios with regulated loads, dynamic pricing, and renewable
resources. After an extensive analysis of relevant published
research, the authors concluded that integrating DGs and
BESS into distribution networks significantly improve net-
work efficiency. DR facilitates a high penetration of DGs and
provides substantial advantages to smart grid participants,
including customers, DSOs, generating firms, and aggrega-
tors. Although previous research has explored the optimal
allocation of DGs when coordinating with DR, the incorpo-
ration of BESS in this context remains understudied. Hence,
the objective of this research is to examine the role and bene-
fits ofDR in effectively integratingDGs andBESS in theDN.
A key factor influencing the effectiveness of DR is consumer
participation levels. Therefore, the study aims to determine
howDR rates impact the appropriate sizing and placement of
solar photo voltaic (SPV) andBESS systems. To achieve this,
a multilevel optimization framework is utilized to seamlessly
integrate PVs and BESS with DR planning in the DN.

According to the report released by the Central Electricity
Authority (CEA) in 2022, the carbon dioxide (CO2) emission
from coal power plants (CPP) in the Indian power sector is
0.975 tCO2/MWh [37]. To reduce these emissions, strategi-
cally placing renewable DG in the DN is essential. In this
paper, SPV is considered as the renewable DG, known for its
pollution-free electricity production. However, it is crucial

to note that CO2 emissions occur during the construction of
SPV plant components, as they rely on electricity from ther-
mal power plants. For SPV modules, the estimated lifetime
CO2 emission is 0.053 kg per 1 kWh of electrical energy
[38].

Figure 1 shows the capacity additions from financial year
(FY) 2000–2001 to FY 2021–2022. Notably, coal-based
capacitywitnessed substantial growth fromFY2000–2001 to
FY2015–2016, but therewas a significant decline in capacity
additions from FY 2016–2017 to FY 2021–2022. Hydro-
based capacity additions also experienced a notable decrease
starting from FY 2017–2018. No recorded additions were
observed in other generation capacities during this period.

Figure 2 illustrates the trend of theweighted average emis-
sion factor fromFY2017–2018 toFY2021–2022.DuringFY
2021–2022, there was a slight increase in the weighted aver-
age emission factor, primarily due to a rise in total electricity
generation, with approximately a 2% increase in coal-based
generation. However, there was a minor reduction in gas
and hydro-based generation. Additionally, the proportion of
imported coal decreased from 9 to 4% compared to the pre-
vious fiscal year.

This research paper encompasses several objectives,
including minimizing feeder energy losses and BESS energy
conversions, reducing voltage deviations, and minimizing
reverse power flow while maximizing the use of BESS and
DR in the presence of high SPV penetration. So that the CO2

emission can be reduced effectively. To assess the effective-
ness of proposed framework, numerous test scenarios have
been examined to a typical 33-bus test data set and the power
grid is supplied by CPP.

2 Problem conceptualization

Effectively increasing the adoption of renewable energy
sources and optimizing energy efficiency can lead to substan-
tial reductions in CO2 emissions. By reducing the electricity
demand from conventional CPP, significant CO2 emissions
can also be curtailed.

In this study, the following objectives have been examined
for the optimal allocation of PV and BESS in the effective
synchronization of DR panning in DN.

2.1 Minimization of power losses

Power losses during power transmission in DN are con-
siderable. Implementing technological advancements like
integrating DGs, optimizing BESS functionality, and coor-
dinating DR offer substantial potential for reducing these
losses. Minimizing power loss is a crucial goal function, as it
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Fig. 1 Breakdown of new added capacity covered by the database over the period 2000–2001 to 2021–2022 [37]

Fig. 2 Development of the weighted average emission factor for the Indian Grid over the period 2017–2018 to 2021–2022 [37]

directly affects the annual income of utilities and has impli-
cations for all stakeholders [39].
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2.2 Minimization of reverse power flow

Anticipated rise in renewables to meet green energy tar-
gets and reduce emissions. Increasing penetration may cause
reverse power flow during low demand, posing operational
complexity and protection challenges for DSOs. DG integra-
tion aims to address this reverse flow possibility. The goal:
achieving bidirectional power flow.

f2 �
24∑
T�1

PT
R (3)

PT
R �

⎧
⎨
⎩
0, if I TGrid ≥ ISpc

Re
(
V T
Grid I

T ∗
Grid

)
if I TGrid < ISpc..

(4)
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2.3 Minimization of BESS conversion losses

Recent research has extensively focused on converters and
battery storage systems. To ensure efficient integration of
BESS, it is crucial to minimize converter losses. As a result,
one of the objectives is to consider the conversion losses
during the charging and discharging periods of BESS. The
formula for BESS loss is as follows:

f3 �
(

24∑
T�1

PT
c

)
(5)

PT
c � (1 − η)PT

BESS
(
Ci
Di

) (6)

2.4 Node voltage deviation

To maintain power supply reliability, the DN must operate
within an acceptable voltage range. Typically, a penalty func-
tion is used to account for voltage violations. This penalty
function can also be considered as one of the objectives.

The purpose of exceeding the voltage limit can be stated
as follows [40]:

f4 �
(
1 +

24∑
T�1

V T
D

)
(7)

V T
D �

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣VMin − V T
i

∣∣∣ if V T
i < VMin.

0 if VMin. ≤ V T
i ≤ VMax.

	 if V T
i > VMax.

(8)

l denotes an arbitrarily large positive integer. A high value
represents an unfavorable solution, particularly when it
comes to voltage rise beyond the maximum working limit,
which poses a significant problem [41]. The issue of volt-
age rise intensifies during low demand, potentially leading
to equipment failure due to insulation collapse and impact on
protection measures. The increasing voltage poses a major
obstacle to deeper DG penetration in the DN. To address
this, a hard constraint is imposed to prevent violations of
the higher voltage limit. Conversely, the minimum voltage
is treated with more flexibility, allowing slight deviations as
long as an appropriate penalty factor is applied.

2.5 Fitness function

To achieve the required objectives, it is required to make
a fitness function having the weightage factor of different
objective functions. For level 1 of optimization, the fitness
function (F𝓁1) is given as:

min(F𝓁1) � � × L × f4 (9)

where L � f1 + f2 + f3.
The level 2 of the optimization objectives involves taking

into consideration the DR planning and scheduling methods
of DGs and BESS. In this stage, the BESS conversion losses
are irrelevant and have no impact. Because of this, the fol-
lowing objective function will be taken into consideration for
level 2 of the optimization problem:

min(F𝓁2) � κ × f4 (10)

where κ � f1 + f2.
In this context, the fitness function for level 2 is denoted

by F𝓁2.
It is vital to have a dispatch strategy, which is determined

upon by the DR aggregator. This helps tominimize the afore-
mentioned goal function.

2.6 Demand response aggregator

The developed DR system considers the benefits enjoyed by
various stakeholders, including DSOs and consumers. The
DR aggregator influences customers’ demand scheduling
based on their participation in DR, subject to technological
limitations. This study primarily focuses on the technolog-
ical challenges caused by the widespread use of SPVs. DR
implementation uses dynamic tariff information to schedule
loads and achieve maximum reduction in set technical tar-
gets, without considering financial objectives. Participants
in mandatory DR programs may face financial penalties for
not following the aggregator’s instructions. The scheduling
of demand aims to balance total consumption and available
resources throughout the day, restructuring demand instead
of simply reducing overall consumption.

The DR aggregator schedules load by collecting informa-
tion on responsive and nonresponsive load demand, making
it an essential part of the program.

Responsive load demand refers to the electricity demand
that can be adjusted or shifted in response to instructions from
the DSO. On the other hand, nonresponsive load demand
denotes the electricity demand that cannot be altered or
shifted from its usual operating hours. Essentially, respon-
sive loads provide flexibility in their consumption patterns,
allowing for adjustments to optimize the overall performance
and efficiency of the electrical grid, particularly in scenar-
ios where the DSO seeks to balance supply and demand
or manage grid constraints. In contrast, nonresponsive loads
maintain a fixed demand profile, typically adhering to their
established operating schedules without the capacity for
immediate adjustment based on external instructions. Equa-
tion (13) represents the complete demandat any timeT,which
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is the sum of all types of loads (responsive and nonrespon-
sive). To meet responsive demand without affecting overall
daily demand, scheduling restrictions are defined in Eq. (14),
with Eq. (15) representing the minimum and maximum val-
ues of responsive demand. The peak value of responsive
demand depends on the penetration level of DR, as shown in
Eq. (16). VariousDR restrictions are considered, as discussed
in [42].

PT
i �

(
PT
Gi − PT

Di

)
∀T , i (11)

QT
i �

(
QT

Gi − QT
Di

)
∀T , I (12)

PT
Di �

(
PT
in, i + PT

el, i

)
∀T , i (13)

N∑
i�1

24∑
T�1

(
PT
in, i + PT

el, i

)
× �t � ETotal

i (14)

Pmin
el, i ≤ PT

el, i ≤ min
((

C − PT
in, i

)
, Pmax

el, i

)
∀T (15)

Pmax
el, i � χ

24∑
T�1

LT
d , i (16)

The optimal solution to the optimization issue is a vec-
tor of responsive load schedules with a length of T and is
represented as:

Pel �
[
P1
el, P

2
el, P

3
el, P

4
el · · · PT

el

]
∀T .

2.7 Objective constraints

The objective functions are constrained in a variety of ways
by both technical and operational considerations. These
restrictions can be represented numerically as follows:

2.7.1 SPV generation limit constraint

The constraint for PV generation limit is given as:

0 ≤ PPV, i ≤ Pmax
PV ∀i (17)

2.7.2 BESS constraints

The constraints of BESS are given as:

0 ≤ EBESS, i ≤ EMax
BESS∀i (18)

PMin.
BESS ≤ PT

BESS(Ci /Di )
≤ PMax.

BESS∀T , i (19)

SOCMin. ≤ SOCT
i ≤ SOCMax. ∀T , I (20)

SOCT
i �

{
SOCT−1

i + PT
BESS(Ci /Di )

ηc�t/ER
BESS if PT

BESS(Ci /Di )
> 0

SOCT−1
i + PT

BESS(Ci /Di )
�t/ηd E

R
BESS else

(21)

24∑
T�1

ηc P
T
BESS(Ci /Di )

+ PT
BESS(Ci /Di )

/ηd � 0 (22)

Equation (18) represents the limitations of energy while
Eq. (19) represents the limitations of power dispatch. The
limits of SOC are given in Eq. (20), and SOC status is
presented in Eq. (21). SOC balancing constraints are demon-
strated in Eq. (22). All the above equations are at specific
node and time.

2.7.3 Feeder constraint

The constraint for the thermal limits is given as:

I Ti j ≤ Imax
i j ∀T , i , j (23)

2.7.4 Power balance constraints

PT
i � V T

i

n∑
j�1

V T
j Yi j cos

(
θi j + δTj − δTi

)
∀T , i (24)

QT
i � −V T

i

N∑
j�1

V T
j Yi j sin

(
θi j + δTj − δTi

)
∀T , i (25)

The actual and reactive power balance restrictions are
shown by Eqs. (24) and (25), respectively.

2.8 Demandmodeling

The demandmodeling of the system is given in the following
equations:

PT
D, i � κT

i P0
D, i∀T , i (26)

QT
D, i � κT

i Q0
D, i∀T , i (27)

2.9 SPV generationmodeling

Solar power generation is dependent on a number of other
factors aswell, such as the type of panel and its area, the angle
at which it is tilted, and the amount of solar radiation that is
received. For the purposes of this study, during a specific
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period of time, it is assumed that all other parameters remain
unchanged. The transformation of the current in relation to
the rated voltage may be found as follows:

I Tpv �
{
IPV if RT

PV ≥ Rr
PV

IPV × RT
PV/Rr

PV if RT
PV < Rr

PV

(28)

3 Optimization technique

As discussed in previous case, the presented optimization
objectives required such a optimization technique that can
solve the complex nonlinear problem. The adoption of amul-
tilevel optimization context is required by the presence of
BESS since it takes into consideration both the limits asso-
ciated with SOC levels and their accessibility. The optimal
allocations of PVs and the BESS are determined at the first
level of optimization. At the second level of optimization,
the hourly power scheduling of BESS in the synchronization
of DR programs is determined. This is done to make sure
that the operational gains from DSO are used to their fullest
extent.

Any evolutionary method can be utilized to address the
difficult multilevel optimization issue that has to be solved.
According to a review of the relevant published material, it
has been determined that PSO is the method that is utilized
most frequently for tackling the DG planning optimization
problem [43]. As a result, the optimization goal presented in
this work has been met at both levels by using PSO.

The PSO is an optimization approach that has the capabil-
ity to search for a global or near-global solution to difficult
optimization issues involving power systems, and it is a
particle-based meta-heuristic technique. Here are the things
that need to be done to improve the multilevel optimization
that is being thought about:

I. Set the initial values for the parameters and variables
that are used in level 1 optimization. It includes loca-
tions, sizes of PVs and BESS, and parameters of the
proposed optimization technique.

II. Upgrade the sizes and locations of PV that have been
determined heuristically.

III. Apply the calculated load factor κT
i to the PT

Di and
QT

Di for a period of 24 h.
IV. The level 2 gets the most up-to-date location, size of

BESS PT
Gi , P

T
Di , and QT

Di so that BESS and DR can
be managed as well as possible.

V. For the level 2, the arrangement of responsive load
and BESS power dispatch over a period of twenty-
four hours is seen as the variables.

VI. At the level 2, the scheduling of BESS and DR is
started subsequently getting the outcomes from first
level subjected to various constraints of the system.

VII. Execute the load flow to find out how much power is
lost and how much voltage is at each node.

VIII. Perform another round of updates to PT
Gi (BESS dis-

charging) and PT
Di (BESS charging and also depends

on the planning of responsive loads) in accordance
with the BESS and DR schedules that were optimized
in level 2.

IX. The level 1 controller receives upgraded variables like
PT
Gi , P

T
Di , SOC, and BESS power in order to optimize

the objective of Eq. (9).
X. Perform the load flow to find out the energy losses

in addition the level of voltages at different nodes, it
is necessary to evaluate the performance of level-1
optimization function.

XI. Preserve the level 1 populationwith the highest fitness
and its matching best population.

The flow-chart that is given in Fig. 3 illustrates both the
upper and lower levels’ structures in great detail.

The scheduling of BESS will depend upon the optimized
value of dispatch power and the present value of SOC. The
value ofDOD is assumed to be 20%of the peak value ofDOD
and, primarily, the value of SOC is equal to the value ofDOD.
The optimal power dispatch and SOCwill determine how the
BESS charges and drains.

4 Results and discussion

The proposed multilevel optimization technique is imple-
mented on the IEEE 33 bus system as shown in Fig. 4 [44].
In this research, the effects of DR technologies are shown
and analyzed in order to solve the optimal power dispatch
problem in a number of different scenarios and with a num-
ber of different constraints. The optimization objectives are
solved with the help of proposed optimization techniques
by using MATLAB software on i3 core processor having
12 GB RAM. PV is considered as DG during the optimal
planning of power dispatch with the coordination of BESS
and different DR rates. The details about the simulation set-
tings for the multilevel optimization are given in Table 1.
Additionally, the values of base voltage, nominal active
demand, nominal reactive demand, power loss, Vmin, Vmax,
PMin
BESS, P

Max
BESS, SOC

Min , SOCMax. , DGMax. and EMax
BESS are

12.66 kV, 3715 kW, 2300 kVAr, 202.7 kW, 0.95 pu., 1.05 pu,
− 1 MW, 1 MW, 0,1, 2 MW and 5 MWh, respectively.

Table 2 demonstrates how the DR rates impact the overall
performance of the DN. The participation of different cus-
tomers in various DR programs is reflected in the various DR
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Fig. 3 Flow-chart for multilevel optimization approach

123



Electrical Engineering

Fig. 4 IEEE 33 bus system

Table 1 Simulation parameters of multilevel optimization technique

Parameters Level-1 Level-2

Swarm size 20 50

Inertia weight 1 1

Inertia weight damping ratio 0.99 0.99

Personal learning coefficient 1.5 1.5

Global learning coefficient 2 2

Maximum number of iterations 50 50

rates. In this case study, we are assuming that type DR pro-
grams are required. Participants in mandated DR programs
are required to pay the fine/penalty if they did not coordinate
their usage in accordance with the DR aggregator’s instruc-
tions.

As a result, it is essential for theDR aggregator tomonitor,
control, and advise the consumers on scheduling the demand
in accordance with the implemented DR rate. The outcomes
of the optimal planning of power dispatch in the coordina-
tion of DG, DR, and BESS are given in Table 3. Once the
recommended technique is put into place, significant reduc-
tions in yearly energy loss, reverse power flow, and voltage

variations are seen. As an illustration of the effectiveness of
the suggested technique, we present several case studies and
their respective results. The proposed approach has a note-
worthy impact on the CO2 emissions of the CPP, as clearly
outlined in Table 4.

4.1 Case 1

The purpose of discussing this scenario is to showcase the
effectiveness of the proposed approach. For this analysis, nei-
ther PV nor BESS is considered in the 33-bus radial DS. In
this specific case, the DSO relies entirely on power from the
grid. The daily consumption pattern, obtained from reference
[45], is incorporated into the proposed objective functions
for convenience and speed. Based on Table 2 and 3, the base
scenario shows differences of 5397.73 kW between maxi-
mum and minimum demand, a minimum mean voltage of
0.978178 p.u., and yearly energy losses of 1426 MWh. The
peak demand occurs around 20:00 in the evening, while the
valley point is approximately at 5:00 in the morning. The
total CO2 emission per day is 75,446.33 kg.

Table 2 Effect of the coordination of DR with optimally integrated renewable DG and BESS on demand

Case no Category Maximum demand
(kW)

Maximum demand
mitigation %

Difference between
maximum-to-minimum
demand (kW)

% of maximum loss
mitigation at 8:00 PM

1 Base Case 6519 0 5397.73 0

2 DG 6519 0 6016.39 0

3 DR@10% 5548 16.1 4166.14 36.09

DR@20% 5321 18.42 3730.6 42.77

4 DG + DR@10% 5370 17.33 4322.87 33.69

DG + DR@20% 4790 26.78 3540.31 45.69

5 DG + BESS 4355 33.23 4100.89 37.09

6 DG + BESS +
DR@10%

3810 41.54 3299.7 49.38

DG + BESS +
DR@20%

3290 49.54 2498.53 61.67
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4.2 Case 2

In this case, the initial optimization level calculates the
penetration level and locations of DGs while keeping the
remaining information unchanged. According to Table 2 and
3, specific values for this scenario indicate the difference
between maximum and minimum demand as 6016.39 kW,
the minimum mean voltage as 0.99634 p.u., and the yearly
energy losses as 1115MWh. The peak demand remains con-
stant, depicted in Fig. 2, owing to the difference in solar
generation availability compared to peak demand occur-
rence. Another valley point observed from 10:00 to 15:00
is attributed to the increased penetration of DG, reducing
grid demand.

The optimized integration of DGs significantly improves
power quality parameters. Specifically, in this instance,
yearly energy losses reduced by approximately 21.8%, and
the minimum mean voltage increased from 0.978178 to
0.99634 p.u. Table 3 presents the optimal dimensions and
placement of PV installations within DS. The impact of DGs
on demand pattern, voltage pattern, and active power losses is
illustrated in Figs. 5, 6, and 7, respectively. TheCO2 emission
is reduced by 26.51% in comparison with base case scenario.

4.3 Case 3

In this specific scenario, the study focuses solely on evalu-
ating the effectiveness of the DR approach without coordi-
nating with DGs or BESS. Two different levels of demand
elasticity, namely 10 and 20%, are considered as the DR
rates. DR identifies the elastic load that can be adjusted to
suit demand and pricing conditions, while the inelastic load
remains constant. Introducing various elastic loads in DR
significantly improveperformance compared to the basic sce-
nario. Peak demand is reduced by 14.72 and 18.32% for the
10 and 20% DR rates, respectively, and annual energy losses
decrease between 5.96 and 8.2%.This confirms thatDR leads
to reduced energy losses and improved peak-to-valley differ-
ence, even without DG integration.

Figures 8 and 9 demonstrate the impact of a 10% DR rate
on demand pattern, voltage pattern, and active power losses,
respectively. Similarly, Figs. 10 and 11 show the impact of
a 20% DR rate on the same aspects. Notably, in the absence
of DG integration, DR has a negligible effect on the voltage
profile and CO2 emission in comparison with the base case.

4.4 Case 4

In this scenario, the analysis focuses on incorporating DGs
into DR coordination and planning, considering various sys-
tem constraints. The integration of DGs with DR scheduling
significantly enhances the benefits provided by DGs. Addi-
tionally, system performance improves with higher DR rates,

even in the presence of smaller DGs. Notably, the yearly
energy loss shows a substantial decrease, ranging from 29.03
to 33.31%, depending on the DR rates, and the lowest mean
voltage experiences a significant increase compared to cases
1 and 2.

Furthermore, when comparing the results of using
DGs alone, the difference between maximum-to-minimum
demand decreases considerably, leading to a more balanced
load profile. Figures 12, 13, and 14 demonstrate the impact of
DGs and a10%DRrate ondemand, voltage, and active power
losses, respectively. Similarly, Figs. 15, 16, and 17 illustrate
the impact of DGs and a 20% DR rate on demand, voltage,
and active power losses, respectively. The CO2 emission for
DR rate 10 and 20% are 29.31 and 24.87% respectively.

4.5 Case 5

A studywas conducted to evaluate the impact of BESS on the
optimal allocation ofDGs. The findings, presented inTable 3,
show the determined placement and dimensions of theBESS.
The planning and scheduling ofBESS charging and discharg-
ing were strategically executed to improve the voltage profile
and reduce energy losses in the network. Coordinating the
ideal BESS with DGs aimed to minimize the adverse effects
of excessive penetration. The results in Table 2 demonstrate
a significant reduction in yearly energy loss (down to 42%)
and a flatter load curve compared to a previous case (case-2).

Furthermore, the application of BESS resulted in a
remarkable increase in the optimumDGpenetration (90.93%
as opposed to 69.44%). Figures 18, 19, 20 and 21 showcase
the impact of DGs and BESS on the demand pattern, voltage
profile, active power losses, and BESS energy storage. The
CO2 emission is reduced by 32.47% in comparison with the
base case.

4.6 Case 6

In this situation, the coordination between the DR aggrega-
tor and the BESS integrator is essential for optimizing the
allocation of DGs and BESS. It is observed that the sizing of
BESS andDGdepends on theDR rate. Furthermore, a higher
DR rate leads to smaller BESS and DG sizes, enhancing the
efficiency of the system and improving the DN function-
ality. According to Table 3, the most significant reduction
in yearly energy loss (46.77% savings) is achieved when
combining DG, BESS, and a DR rate of 20%. This study
emphasizes the importance of incorporating an appropriate
DR rate alongside DGs and BESS to ensure an efficient
operation of the DN. Figures 22, 23, 24, 25, 26, 27, 28
and 29 demonstrate the impact of varying DR rates on the
synchronization of optimal DG and BESS allocation, includ-
ing the effects on demand pattern, voltage profile, active
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Fig. 5 Impact of DGs on demand
pattern

Fig. 6 Impact of DGs on voltage
pattern

Fig. 7 Impact of DGs on active
power losses
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Fig. 8 Impact of 10% DR rate on
demand pattern

Fig. 9 Impact of 10% DR rate on
active power losses

Fig. 10 Impact of 20% DR rate
on demand pattern
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Fig. 11 Impact of 20% DR rate
on active power losses

Fig. 12 Impact of DG and 10%
DR rate on demand pattern

Fig. 13 Impact of DG and 10%
DR rate on voltage pattern
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Fig. 14 Impact of DG and 10%
DR rate on active power losses

Fig. 15 Impact of DG and 20%
DR rate on demand pattern

Fig. 16 Impact of DG and 20%
DR rate on voltage pattern
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Fig. 17 Impact of DG and 20%
DR rate on active power losses

Fig. 18 Impact of DG and BESS
on demand pattern

Fig. 19 Impact of DG and BESS
on voltage pattern
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Fig. 20 Impact of DG and BESS
on active power losses

Fig. 21 BESS energy storage
(DG + BESS)

Fig. 22 Impact of DG, BESS and,
10% DR rate on demand pattern
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Fig. 23 Impact of DG, BESS and,
10% DR rate on voltage pattern

Fig. 24 Impact of DG, BESS
and, 10% DR rate on active
power losses

Fig. 25 BESS energy storage
(DG, BESS and, 10% DR rate)
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Fig. 26 Impact of DG, BESS, and
20% DR rate on demand pattern

Fig. 27 Impact of DG, BESS,
and20% DR rate on voltage
pattern

Fig. 28 Impact of DG, BESS
and, 20% DR rate on active
power losses
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Fig. 29 BESS energy storage
(DG, BESS and, 20% DR rate)

power losses, and BESS energy storage. The CO2 emission
is reduced by 32.71% in comparison with the base case.

5 Conclusions

In the context of future DN, three crucial elements are renew-
able energy utilization, demand DR planning, and the energy
storage system. To maximize the technical, financial, and
environmental benefits of DN, a well-coordinated optimiza-
tion approach is proposed in this paper. The methodology
focuses on efficiently planning and executing upgrades to
the DN. This multilevel optimization system optimizes the
coordination of SPV penetration, DR scheduling, and BESS
allocation. At level-1, the optimal sizes and locations of DGs
and BESS are determined, considering various constraints.
At level-2, the DR program is implemented, coordinating
with the outcomes from level-1 and dispatching BESS to
maintain the balance between renewable energy generation
and loaddemand.Todemonstrate the effectiveness of the pro-
posed technique, the IEEE 33 test system is employed. The
harmonious integration of DGs, BESS, andDR is explored to
achieve the highest possible DN performance. Notably, the
performance of DN is significantly impacted by the coor-
dination of different DR rates. In summary, this research
highlights the importance of a coordinated approach in future
DN, emphasizing the benefits of renewable energy, DR, and
energy storage integration.

The implementation of the proposed approach demon-
strates that the most substantial reduction in CO2 emissions
(32.71%) is achieved through the coordination of DG, BESS,
and a 20% DR rate. Simultaneously, the maximum penetra-
tion of renewable energy (89.96%) is attained through the
optimal allocation of DG in the coordination with BESS
(Figs. 30 and 31).

i. In terms of performance, DGs prove to be highly effec-
tive in reducing annual energy losses. However, they do
not consistently improve the load profile, and in some
cases, may even have a negative impact on it. Further-
more, increasedDGpenetration can lead to voltage level
surges and potential reverse power flow to the grid, set-
ting a limit on their integration into the DS.

ii. Besides improving the load profile and voltage profile
while minimizing energy losses, the inclusion of BESS
enables higher DG penetration.

iii. Implementing DR successfully levels the load profile,
reducing the gap between peak and minimum demand.
This eases stress on the system and provides additional
benefits, such as reduced reliance on BESS. Conse-
quently, lower BESS deployment leads to a lower DG
penetration. Conversely, if PV and BESS penetration is
expected to be lower, a higher DR rate offers an efficient
means to enhance DS efficiency.

iv. It can be deduced that a higher DR rate relative to opti-
mal results leads to lower DG penetration. A decreased
DG power dispatch results in lower energy loss mini-
mization, and a high DR value may negatively impact
the system. Hence, a coordinated approach among DGs,
BESS, and DR within the DS is crucial.

v. While integrating a Solar PV system into the network
can lead to a reduction in CO2 emissions, the most
favorable outcomes in terms of both CO2 emissions and
power quality parameters are achievedwhen implement-
ing the proposed framework.

vi. The DR scheme exhibits a minimal impact on CO2

emission reduction when implemented independently.
However, its effectiveness significantly improves when
integrated into a coordinated systemwith renewable DG
and BESS.
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Fig. 30 Total CO2 emission/day
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Fig. 31 Reduction in CO2
emission by CPP
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